

Towards global AD Safety Assurance

JAMA AD safety assurance WG Satoshi Taniguchi

1

1. Need for innovative AD safety assurance methodologies

- 2. Current global efforts by Japanese industry and safety principles
- 3. Proposed safety validation methods by Japanese safety experts
- 4. Need for harmonization and consistency for all automation levels and all operational domains

Need for innovative safety assurance methodologies

Ensuring and proving AD safety is a major industry challenge and traditional safety approaches based on long driving distances and limited physical tests are insufficient. **Innovative safety assurance methodologies are needed.**

- 1. Need for innovative AD safety assurance methodologies
- 2. Current global efforts by Japanese industry and safety principles
 - 3. Proposed safety validation methods by Japanese safety experts
 - 4. Need for harmonization and consistency for all automation levels and all operational domains

Japan coordinated efforts for global regulations and standardization

Japanese industry and authorities are closely working to develop safety validation methodologies, tools, processes and databases that support the development of national and international regulations and standards.

Japan coordinated initiative

We are deploying a global collaborative research plan involving a number of key collaborators to develop consensus driven approaches

Safety Assurance Standard Landscape

Safety assurance standards are being developed actively

page7

Global authority driven AD safety requirements

Safety requirements

Guidelines on the exemption procedure for the EU approval of Automated Vehicles

<u>Safety requirements</u>: When in the AD mode, the vehicle shall not cause any traffic accidents that are rationally <u>foreseeable</u> and <u>preventable</u>

WP29: Framework document on automated vehicles

Safety vision: AV shall not cause any nontolerable risk, meaning that, under their operational domain, shall not cause any traffic accidents resulting in injury or death that are reasonably <u>foreseeable</u> and <u>preventable</u>

Key safety elements

NHTSA AUTOMATED DRIVING SYSTEMS 2.0	MLIT Automated Driving Guideline	VMAD(Validation Method for Automated Driving)
1. System Safety	(2) Safety of Automated Driving Systems	a. System Safety
2. Operational Design Domain	(1) Setting of Operational Design Domain (ODD)	e. Operational Domain (OD) (automated mode)
3. Object and Event Detection and Response	-	d. Object Event Detection and Response (OEDR)
4. Fallback (Minimal Risk Condition)	(7) Safety of Vehicles Used for Unmanned Driving Services (additional requirements)	b. Failsafe Response
5. Validation Methods	(8) Safety Evaluation	f. Validation for System Safety (reshown)
6. Human Machine Interface	(4) Human Machine Interface (HMI)	c. Human Machine Interface (HMI) /Operator information
7. Vehicle Cybersecurity	(6) Cybersecurity (9) Safety of In-Use Vehicles	g. Cybersecurity h. Software Updates
8. Crashworthiness	-	-
9. Post-Crash ADS Behavior	-	-
10. Data Recording	(5) Installation of Data Recording Devices	j. Data Storage System for Automated Driving vehicles (DSSAD)
11. Consumer Education and Training	(10) Information Provision to Automated Vehicle Users	m. Consumer Education and Training
12. Federal, State, and Local Laws	(3) Compliance with Safety Regulations, etc	I. Safety of In-Use Vehicles

Industry challenge: To develop state-of-the-art engineering products that are fully compatible with these safety requirements and elements.

Safety principles and corresponding engineering framework

A comprehensive safety assurance methodology and corresponding virtual testing environment are the key.

1. Need for innovative AD safety assurance methodologies

2. Current global efforts by Japanese industry and safety principles

3. Proposed safety validation methods by Japanese safety experts

4. Need for harmonization and consistency for all automation levels and all operational domains

Ongoing discussion scheme in Japan for UN proposals

Development of traffic disturbance scenarios

Traffic disturbance scenario structure

		Ego-vehicle behavior		
		Lane keep	Lane change	
Road geometry	Main roadway	Free Driving Following	Lane change Overtaking	
	Merge	Merging in front	Merge	
	Departure		Branch	
	Ramp	Following Free Driving	Lane change Overtaking	

Road Structure Ordinance

Surrounding vehicle locations and motions

Surrounding vehicle location	Cut in	Cut out	Accel.	Decel.	Sync
1. Lead		0		0	
2. Follow			0		
3. Parallel	0			0	
4. Parallel	0				\bigcirc
EGO vehicle					
5. Parallel	0		0		
6. Parallel	0			0	
7. Parallel	0				0
8. Parallel	0		0		

8+1 locations

Scenarios developed by systematic analysis and classification of different combinations of road geometry, ego-vehicle behaviour, and surrounding vehicles locations and motion

Traffic disturbance scenario structure

Ego :Side :Follow :Lead1 :Lead2			Surrounding vehicle position & motion				
_	Road geometry	Ego-vehicle behavior	Cut in	Cut out	Acceleration	Deceleration (Stop)	Sync
Road geometry and Ego-vehicle motion	Main roadway	Lane keep			No.3.dx-> Gx		
		Lane change			No.7	Not 8-dx-	
	Merging zone	Lane keep	No.10				
		Lane change	No.12	No.13	No.14	No.15	No.16
	Departure zone	Lane keep	No.				No.18 Gx
		Lane change	No.19	No.20	No.21		No.28
	Ramp –	Lane keep		No.25 dr		No.27dx.	
		Lane change		No 29 dy dx - C up vy	No.30	Gx	

32 well organized functional scenarios out from the proposed structure

Scenario completeness verification and parameter ranges

Accident data and traffic monitoring data applied to evaluate the completeness of the scenario structure and to define parameter ranges for each scenario

Traffic data collection in Japan

Ongoing data acquisition by third party institutions using instrumented vehicles and fixed cameras over safety critical sectors in motorways

Traffic data accuracy evaluation

Verification of the accuracy of the collected traffic data, extraction of the vehicle trajectories and classification according to the scenario structure.

Derivation process of foreseeable scenarios

Consensus based rules to process and analyze real-world data, as well as to define corresponding foreseeable parameter ranges

- 1. Need for innovative AD safety assurance methodologies
- 2. Current global efforts by Japanese industry and safety principles
- 3. Proposed safety validation methods by Japanese safety experts
- Need for harmonization and consistency for all automation levels and all operational domains

Summary

- ✓ The Japanese industry and authorities are closely working to develop safety validation methodologies, tools, processes and databases to support the development of national and international regulations and standards.
- ✓ We are deploying a global collaborative research plan involving a number of key collaborators to develop consensus driven approaches, and we are willing to expand these collaborations.

Global collaborative research effort by the Japanese industry

SIP-adus Workshop 2019

12nd -14th/Nov at Tokyo

Thank you!

satoshi_taniguchi_ad@mail.toyota.co.jp

